10.4.21

Polyominos und Polykuben mit Schachbrettmuster (Übersicht)

Polyominos und Polykuben lassen sich mit einem Schachbrettmuster versehen, indem man benachbarte Elementarquadrate bzw. Elementarkuben mit zwei Farben jeweils abwechselnd färbt.

Da es bei den Polyominos bei fehlender Symmetrie jeweils zwei verschiedene Möglichkeiten gibt, dieses Muster aufzutragen, entstehen bei verschieden gemusterten Steinen auch verschiedene Geduldspiele. Und diese können unterschiedlich kompliziert sein. Um überhaupt die Lösbarkeit eines solchen Geduldspiels sicherzustellen, können wir folgendermaßen vorgehen: Wir lösen das zugrundeliegende Geduldspiel zunächst ohne ein Schachbrettmuster auf den Steinen. Haben wir eine Lösung gefunden, dann denken wir uns die gesamte Lösungsfigur schachbrettartig gefärbt und färben wir die Steine entsprechend ihrer Lage in dieser Lösung. Als Ergebnis haben wir ein garantiert lösbares Geduldspiel.

Im Falle von zweidimensionalen Aufgaben mit Polyominos haben unsere Steine jeweils eine Ober- und eine Unterseite. Auf der Oberseite ist das Schachbrettmuster, und für die Unterseite gibt es drei Möglichkeiten:

  • Die Polyominos  werden auf der Unterseite ungefärbt zu lassen. In diesem Fall dürfen die Polyominos also nicht gewendet werden (oben links im Bild). 
  • Die Polyominos werden oben und unten gleich gefärbt. Das ist bei Polyominos aus einfarbigen Elementarwürfeln der Fall (oben rechts im Bild).
  • Die Polyominos werden oben und unten verschieden gefärbt. Dies ist die typische Variante im Falle „flacher“ Steine. Die Bedingung der 32:32-Parität wird hier in dem Sinne „aufgeweicht“, dass sich für jedes Polyomino die Anzahlen der weißen Felder auf Ober- und Unterseite unterscheiden können. 
  • PolySolver-Info: Zweidimensionale Aufgaben mit Schachbrett-Polyominos lassen sich mit dem PolySolver lösen. Und zwar mit dem Gitter vom Typ Octagon (4,8,8). Um 45 Grad gedreht besteht es abwechselnd aus großen und kleinen Quadraten, welche die Rolle der schwarzen und weißen Felder übernehmen können. 

     

    Eine große Klasse solcher Geduldspiele besteht aus zersägten Schachbrettern, hier werden 8x8-Quadrate mit Schachbrettmuster entlang einzelner Kanten von Elementarquadraten zerschnitten. Dabei gibt es keine Beschränkung auch irgendwelche Formen (wie etwa Pentominos), sondern eine Mischung verschiedener Größen und Formen ist möglich. Solche Geduldspiele gibt es schon mindestens seit 1880, und sie können trotz ihres unscheinbaren Aussehens recht anspruchsvoll sein.

    Allereinfachster Packwürfel